IBR in cattle

Help Support CattleToday:

Agboy

Well-known member
Joined
Oct 22, 2005
Messages
102
Reaction score
0
Location
Nebraska
Can you guys fill me in on what this disease is an its symptoms?. I am just learning all the basic diseases that cattle get an the best preventative measures available. An the vaccines available to prevent it. Thanks for the help in advance. :wave:
 
In the blue band above this box, where you logout, is a search option. Type in IBR. You will get all kinds of information. I hope that you are not fighting it!
 
3.ii INFECTIOUS BOVINE RHINOTRACHEITIS (IBR)

Aetiology and Pathogenesis

The causative agent is Bovine Herpesvirus 1. Expression of clinical disease is greater in stressed animals but "late breaks" in heavy, healthy cattle can occur. BHV1 destroys the mucociliary escalator, resulting in failure of the lung clearance mechanisms. Cattle can die from secondary pneumonia but in severe cases the inflammation and necrosis of the trachea can result in death with minimal pulmonary pathology. BHV 1 appears to be ubiquitous in feedlot cattle populations.

Clinical Signs

Clinical signs are the same as for BRD with the additional sign of profuse frothy salivation and extension of the neck. However, these signs may also occasionally occur with bronchopneumonia (BRD) and are therefore not pathognomonic for IBR, but they are a strong indication of the condition.

Diagnosis

 Clinical signs
 Auscultation may indicate increased respiratory sounds localised to the trachea
 Pyrexia during the acute phase
 Post-mortem

Post-mortem Findings

Necrotic tracheitis with possible secondary involvement of the ventral lung lobes resembling an inhalation pneumonia (there may also be inflammation and discrete petechiae on the muzzle and in the nasal cavity, pharynx and larynx).

Treatment

* Antibiotics as outlined above for BRD
* NSAIDs - tolfenamic acid (40 mg/ml, Tolfedine CS) @ 2mg/kg im q 48h twice only - meloxicam (20 mg/ml, Metacam) @ 0.5mg/kg sc, iv once only - ketoprofen (100mg/ml, Key) @ 3mg/kg slow iv or im sid 1-3dd + Vitamin C @ 13mg/kg at the time of treatment with antibiotics

Prevention

As for BRD + vaccination with Rhinogard.

3.i. BOVINE RESPIRATORY DISEASE (BRD)

Aetiology and Pathogenesis

A multifactorial disease related strongly to a variety of stressors, potentially involving several viruses and bacteria. The viruses commonly involved in the disease circulate amongst feedlot cattle at a high level and the common bacteria can be isolated from the airways of clinically normal cattle. Except for the effect of cattle persistently infected with pestivirus increasing the incidence of BRD in cattle in the same and adjacent pens, BRD tends to cluster in groups of cattle from similar origins and does not behave as an "infectious disease". BRD frequently, but not always, begins with a viral infection caused usually by
 Parainfluenza 3 (PI3)
 Pestivirus (an indirect immunosuppressive effect – primary pulmonary lesions from pestivirus have only been produced under experimental conditions).

BRSV does not appear to play a major role in BRD in Australia. IBR, caused by BHV1, is best dealt with as a separate disease entity.

The bacteria that may commonly act as either primary or secondary pathogens are
 Mannheimia haemolytica (formerly Pasteurella haemolytica)
 Pasteurella multocida
 Histophilus somni (formerly Haemophilus somnus)

Other bacteria that may fill the BRD bacterial ecological niche are
 Salmonella spp.
 Arcanobacterium pyogenes (formerly Actinomyces pyogenes, formerly Corynebacterium pyogenes)

Mycoplasma has not been found to have a significant role in BRD in Australian feedlots. The lesion resulting from these infections is a bronchopneumonia plus there may also be pleuritis and/or pericarditis.

Clinical Signs

 Depression/lethargy
 Coughing (esp. when disturbed)
 Nasal discharge (initially serous progressing to mucopurulent)
 Anorexia
 Pyrexia in the acute phase
 Increased respiratory sounds (consolidation results in absence)

Diagnosis

 Clinical signs
 Auscultation is highly variable
 Rectal temperature is highly variable
 Post-mortem

Post-mortem Findings

Varies from mottled red-grey regions of hepatisation and consolidation to severe fibrinopurulent involvement of large areas of the lung with profuse production of purulent exudate and associated pleuritis/pericarditis, with occasional cases displaying peritonitis (Histophilus somni). The extent of the organisation of the fibrin and abscessation of lung lobes give some indication of whether the condition was acute or chronic.

Treatment

Common regimens

 OTC (100mg/ml) @ 3mg/kg im, iv sid or 10mg/kg im eod.
 Tilmicosin (300mg/ml, Micotil) @ 10 mg/kg sc once only
 Ceftiofur (50 mg/ml, Excenel) @ 1mg/kg sc sid
 Florfenicol (300mg/ml, Nuflor) @ 40 mg/kg sc q 3dd
 Tulathromycin (100mg/ml, Draxxin) @ 2.5 mg/kg sc once only
+ Vitamin C @ 14 mg/kg im at the time of treatment with antibiotics

Prevention

 MINIMISE STRESS
 Purchase yard weaned, backgrounded cattle in pen lots
 Dust control (pen cleaning, watering lanes)
 Do not delay induction beyond 3 days
 Fill the rumen initially with highly palatable, high quality hay and clean water
 Feed highly palatable starter diets with 14-16 % CP (aiming for 1/3 UDP) and the maximum possible energy density whilst meeting fibre constraints.
 Minimise the time taken to fill a pen
 Minimise mixing
 Vaccination (?)
 Mass medication of high risk cattle

General info regarding BRD and IBR

Infectious bovine rhinotracheitis (IBR) has previously been considered as part of the Bovine Respiratory Disease (BRD) complex. It is more appropriate to consider IBR as a separate entity because it is only caused by a single organism and bronchopneumonia can still occur in the absence of IBR. Furthermore, in Australia there is now a vaccine effective against IBR with a high level of efficacy. It is important for feedlot managers to understand that Rhinogard vaccine will prevent IBR, but "traditional" BRD will still occur. Nevertheless, IBR is the most severe of the viral respiratory conditions in Australian feedlots and it is cost-effective to prevent it. BHV1 is the only viral respiratory pathogen that can kill cattle without significant secondary bacterial pneumonia. Rhinogard is a modified live intranasal vaccine that must be stored and handled according to the label directions to maintain potency. Unlike IBR, which is only caused by a single organism, BRD is a stress induced disease complex that has a number of potential viral initiators and bacterial pathogens. Mannheimia haemolytica is one of the bacteria capable of filling the microbial ecological niche in BRD. Being only one of the bacterial organisms involved in BRD, vaccination against M. haemolytica alone has a limited effect on the incidence of BRD. The response to vaccination against M. haemolytica is dependent on the proportion of BRD cases succumbing to M. haemolytica and is modified by the proportion of cases that may have succumbed to M. haemolytica that succumb to another bacterial BRD agent. The cost-effectiveness of this vaccine is best assessed by controlled trials on the feedlot of interest and might vary over time.
 

Latest posts

Top